domingo, 4 de diciembre de 2011

Dispositivo (SCR) Rectificador controlado de silicio

Funcionamiento:
 Funciona básicamente como un diodo rectificador controlado, permitiendo circular la corriente en un solo sentido. Mientras no se aplique ninguna tensión en la puerta del SCR no se inicia la conducción y en el instante en que se aplique dicha tensión, el tiristor comienza a conducir. Trabajando en corriente alterna el SCR se desexcita en cada alternancia o semiciclo. Trabajando en corriente continua, se necesita un circuito de bloqueo forzado, o bien interrumpir el circuito


Caracteristicas dinámicas:


• Tensiones transitorias:
- Valores de la tensión superpuestos a la señal de la fuente de alimentación.
- Son breves y de gran amplitud.
- La tensión inversa de pico no repetitiva (VRSM) debe estar dentro de esos valores.
• Impulsos de corriente:
- Para cada tiristor se publican curvas que dan la cantidad de ciclos durante los cuales puede tolerarse una corriente de pico dada (Figura 4).
- A mayor valor del impuso de corriente, menor es la cantidad de ciclos.
- El tiempo máximo de cada impulso está limitado por la temperatura media de la unión.
 

Figura 4. Curva de limitación de impulsos de corriente.

• Ángulos de conducción:
- La corriente y tensión media de un SCR dependen del ángulo de conducción.
- A mayor ángulo de conducción, se obtiene a la salida mayor potencia.
- Un mayor ángulo de bloqueo o disparo se corresponde con un menor ángulo de conducción (Figura 5):

ángulo de conducción  =  180º  -   ángulo de disparo

- Conociendo la variación de la potencia disipada en función de los diferentes ángulos de  conducción podremos calcular las protecciones necesarias.
Figura 5. Ángulo de bloqueo y conducción de un tiristor.
Caracteristicas estaticas:
Las características estáticas corresponden a la región ánodo - cátodo y son los valores máximos que colocan al elemento en límite de sus posibilidades: VRWM, VDRM, VT, ITAV, ITRMS, IFD, IR, Tj, IH.
Aplicaciones:

Las aplicaciones de los tiristores se extiende desde la rectificación de corrientes alternas, en lugar de los diodos convencionales hasta la realización de determinadas conmutaciones de baja potencia en circuitos electrónicos, pasando por los onduladores o inversores que transforman la corriente continua en alterna.
            
La principal ventaja que presentan frente a los diodos cuando se les utiliza como rectificadores es que su entrada en conducción estará controlada por la señal de puerta. De esta forma se podrá variar la tensión continua de salida si se hace variar el momento del disparo ya que se obtendrán diferentes ángulos de conducción del ciclo de la tensión o corriente alterna de entrada. Además el tiristor se bloqueará automáticamente al cambiar la alternancia de positiva a negativa ya que en este momento empezará a recibir tensión inversa.
              

Por lo anteriormente señalado el SCR tiene una gran variedad de aplicaciones, entre ellas están las siguientes:

· Controles de relevador.
· Circuitos de retardo de tiempo.
· Fuentes de alimentación reguladas.
· Interruptores estáticos.
· Controles de motores.
· Recortadores.
· Inversores.
· Ciclo conversores.
· Cargadores de baterías.
· Circuitos de protección.
· Controles de calefacción.
· Controles de fase.

Métodos de disparo:
Para que se produzca el cebado de un tiristor, la unión ánodo - cátodo debe estar polarizada en directo y la señal de mando debe permanecer un tiempo suficientemente largo como para permitir que el tiristor alcance un valor de corriente de ánodo mayor que IL, corriente necesaria para permitir que el SCR comience a conducir.
Para que, una vez disparado, se mantenga en la zona de conducción deberá circular una corriente mínima de valor IH, marcando el paso del estado de conducción al estado de bloqueo directo.
Los distintos métodos de disparo de los tiristores son:
Por puerta.
Por módulo de tensión. (V)
Por gradiente de tensión (dV/dt)
Disparo por radiación.
Disparo por temperatura.
El modo usado normalmente es el disparo por puerta. Los disparos por módulo y gradiente de tensión son modos no deseados, por lo que los evitaremos en la medida de lo posible.


Disparo por puerta
Es el proceso utilizado normalmente para disparar un tiristor. Consiste en la aplicación en la puerta de un impulso positivo de intensidad, entre los terminales de puerta y cátodo a la vez que mantenemos una tensión positiva entre ánodo y cátodo.
Una vez disparado el dispositivo, perdemos el control del mismo por puerta. En estas condiciones, si queremos bloquearlo, debemos hacer que VAK < VH y que IA < IH
  • Disparo por módulo de tensión
Este método podemos desarrollarlo basándonos en la estructura de un transistor: si aumentamos la tensión colector - emisor, alcanzamos un punto en el que la energía de los portadores asociados a la corriente de fugas es suficiente para producir nuevos portadores en la unión de colector, que hacen que se produzca el fenómeno de avalancha. N
Esta forma de disparo no se emplea para disparar al tiristor de manera intencionada; sin embargo ocurre de forma fortuita provocada por sobretensiones anormales en los equipos electrónicos.
  • Disparo por gradiente de tensión
Si a un tiristor se le aplica un escalón de tensión positiva entre ánodo y cátodo con tiempo de subida muy corto, los portadores sufren un desplazamiento para hacer frente a la tensión exterior aplicada. La unión de control queda vacía de portadores mayoritarios; aparece una diferencia de potencial elevada, que se opone a la tensión exterior creando un campo eléctrico que acelera fuertemente a los portadores minoritarios produciendo una corriente de fugas.
  • Disparo por radiación
La acción de la radiación electromagnética de una determinada longitud de onda provoca la elevación de la corriente de fugas de la pastilla por encima del valor crítico, obligando al disparo del elemento.
Los tiristores fotosensibles (llamados LASCR o Light Activated SCR) son de pequeña potencia y se utilizan como elementos de control todo - nada.
  • Disparo por temperatura
El disparo por temperatura está asociado al aumento de pares electrón - hueco generados en las uniones del semiconductor. Así, la suma (a 1+a 2) tiende rápidamente a la unidad al aumentar la temperatura. La tensión de ruptura permanece constante hasta un cierto valor de la temperatura y disminuye al aumentar ésta.
Condiciones necesarias para el control de un SCR
Disparo
  • Polarización positiva ánodo - cátodo.
  • La puerta debe recibir un pulso positivo (respecto a la polarización que en ese momento tengamos en el cátodo) durante un tiempo suficiente como para que IA sea mayor que la intensidad de enganche.
Corte
  • Anular la tensión que tenemos aplicada entre ánodo y cátodo.
  • Incrementar la resistencia de carga hasta que la corriente de ánodo sea inferior a la corriente de mantenimiento (IH), o forzar a que IA < IH.
Tensión de ánodo positiva respecto a cátodo (VAK > 0), con excitación de puerta:
El tiristor, idealmente, se comporta como un cortocircuito (VAK del orden de 1 a 2 V).
Modelo de dos transistores:
Si ahora operamos en el circuito de forma que la suma ((a 1+ a 2) sea menor que 1, el dispositivo estará en estado OFF, manteniéndose la IAmuy pequeña.
Si aumentamos IG, la corriente de ánodo tiende a incrementarse y por tanto, tiende a aumentar a 1 y a 2 produciéndose un efecto de realimentación positiva. De aquí podemos deducir los dos tipos de disparo del SCR:
1.- Por tensión suficientemente elevada aplicada entre A – K, lo que provocaría que éste entrara en conducción por efecto de "avalancha";
2.- Por intensidad positiva de polarización en la puerta.
Tanto para el estado de bloqueo directo, como para el estado de polarización inversa, existen unas pequeñas corrientes de fugas.

 Área de disparo seguro:
               
En esta área (Figura 3) se obtienen las condiciones de disparo del SCR. Las tensiones y  corrientes admisibles para el disparo se encuentran en el interior de la zona formada por las  curvas:
    Curva A y B: límite superior e inferior de la tensión puerta-cátodo en función de la corriente positiva de puerta, para una corriente nula de ánodo.
    Curva C: tensión directa de pico admisible VGF.
    Curva D: hipérbola de la potencia media máxima PGAV que no debemos sobrepasar.

   
                                                                        Figura 3. Curva características de puerta del tiristor.

        El diodo puerta (G) - cátodo (K) difiere de un diodo de rectificación en los siguientes puntos:
Una caída de tensión en sentido directo más elevada.
Mayor dispersión para un mismo tipo de tiristor.


 Estructura:
   




  Figura 2 : Estructura  básica del  SCR.


Caracterristicas Generales:

            • Interruptor casi ideal.
            • Soporta tensiones altas.
            • Amplificador eficaz.
            • Es capaz de controlar grandes potencias.
            • Fácil controlabilidad.
            • Relativa rapidez.
            • Características en función de situaciones pasadas (memoria).






 Caracteristicas Termicas:



            Dependiendo de las condiciones de trabajo de un tiristor, éste disipa una cantidad de energía que produce un aumento de la temperatura en las uniones del semiconductor. Este aumento de la temperatura provoca un aumento de la corriente de fugas, que a su vez provoca un aumento de la temperatura, creando un fenómeno de acumulación de calor que debe ser evitado. Para ello se colocan disipadores de calor.


No hay comentarios:

Publicar un comentario